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SUMMARY 
The boundary layer on a hot flat plate which is fixed at zero 

incidence in a slow stream carrying a progressive sound wave is 
investigated. Formulae are obtained for the skin friction and the 
heat transfer in the extreme cases when the frequency is very low 
and very high. In  addition, different methods of simplifying the 
boundary layer equations in unsteady compressible flow are 
briefly compared. 

1. INTRODUCTION 
During the last few years there has been a revival of interest in the theory 

of unsteady laminar boundary-layer flows. The solution for the initial 
growth of the boundary layer on a body started from rest has long been 
known, but the recent work has been concerned with the later stages of 
such a motion and with the boundary layers associated with fluctuating 
external flows. One of the first contributions to these new developments 
was made by Moore (195 l), who considered the compressible boundary 
layer on a heat-insulated flat plate moving with variable velocity in a uniform 
medium. Moore’s work has since been supplemented by that of Ostrach 
(1955) who treats the same problem for an isothermal flat plate. Both 
these papers are relevant to the boundary layer on a missile whose velocity 
changes continually during flight. 

Another important contribution, dealing with unsteady incompressible 
boundary layers, has been made by Lighthill (1954). He investigates the 
boundary layer in plane flow over a fixed cylinder of arbitrary cross-section 
when the free stream is fluctuating with small amplitude about a steady 
mean value. For incompressible flow, this problem is mathematically the 
same as if the cylinder were moving with the same fluctuating velocity in 
a uniform medium at rest. For this reason, Moore’s and Ostrach’s results 
when interpreted for incompressible fluctuating flow link up with Lighthill’s 
predictions concerning a flat plate. 

Lighthill mentioned the Rijke tube among the possible fields of 
application of the theory of fluctuating boundary layers, and it was, in 
fact, the phenomenon of the Rijke tube that suggested the work described 
in this paper. Rayleigh (1894) describes how such a tube may be set up. 
He quotes the case of a tube 5 ft. long and 4% in. in diameter, open at both 
ends and held vertically. When a fine wire gauze stretching across the tube 
about 1 ft. from the bottom was made red hot by a flame, and then the 
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flame was suddenly removed, almost immediately a sound of considerable 
power was emitted which lasted for several seconds. In the tube there is a 
stream of air composed of two components, namely the fairly slow convection 
current up the tube combined with the longitudinal motion associated with 
standing sound waves. The energy of the sound waves is derived from the 
varying transfer of heat from the gauze to the surrounding air, and this 
changes with the fluctuations in the speed of the air current past the gauze. 
In the Rijke tube, therefore, we have an example of a hot obstacle in a 
fluctuating air stream. It is true that the Reynolds number for the flow past 
the fine wires of the gauze described by Rayleigh is below the range of 
Reynolds numbers for which boundary-layer theory is valid, and therefore 
the theory which follows really applies to an obstacle of larger longitudinal 
dimensions than the gauze. 

The principal aim of the present paper is to investigate the effect of 
high wall temperature on the skin friction and heat transfer on a flat plate 
fixed in a stream carrying sound waves. In  addition, we shall take some 
account of the effects of the fluctuations in density and temperature that 
accompany the sound waves in the external stream. (In Lighthill’s theory, 
for incompressible flow, the obstacle may be warm, but not hot, and the 
density and temperature are constant in the external flow.) Our investigation 
is closely related to, but not equivalent to, Moore’s work on a moving plate. 
For if, in Moore’s problem, we change from axes fixed in the medium to 
axes fixed in the plate, so as to give the appearance of a plate at rest in a 
moving medium, we thereby introduce an apparent pressure gradient 
- p  dU/dt in the boundary layer, where p is the density and U(t)  is the 
velocity of the plate. On the other hand, the pressure gradient for a fixed 
plate in a stream U(t )  which fluctuates slightly and has a uniform mean 
density pm is -pa dUldt. The two pressure gradients are different unless 
p = pa. Thus it is only for incompressible fluids that Moore’s and 
Ostrach’s results provide the answers to our present problem. 

2. EQUATIONS OF MOTION 

We shall consider the boundary layer on a cylindrical obstacle fixed 
in an unsteady stream. An example of such a stream occurs when sound 
waves are propagated downstream in steady flow past the obstacle, and this 
particular flow when the obstacle’is a flat plate will be investigated in some 
detail in $ 3 .  The flow is supposed to be perpendicular to the axis of the 
fixed cylinder, and so only two space coordinates are involved, x measured 
along the surface of the cylinder from the leading edge, and y measured 
perpendicular to the surface. The boundary-layer equations then are 
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where u and v are the velocity components in the x and y directions, 
p, I and p are the density, specific enthalpy and viscosity respectively, 
and P is the Prandtl number, supposed to be constant. The suffix 1 refers 
to the external stream at the edge of the boundary layer and the external 
velocity ul, density p,, pressure p, and enthalpy I,, which are all functions 
of t and x in general, obey the equations 

p, at +u,- a'l) ax - (% 2 +u 1 "1> ax = 0. 

The last equation expresses the fact that the entropy of each fluid elemen 
in the external stream is conserved, but in the example considered in $ 3  
we shall use the even stronger condition that the external stream is 
hornentropic. T o  these equations must be added the equation of state 

Y - 1  p = --PI, 
Y 

(7) 

valid for a gas with constant specific heats, and the equation 

P I  = Pl I l ,  (8) 
which, in conjunction with (7), expresses the fact that the pressure p does 
not change across the boundary layer at any station. 

It is convenient now to follow Moore's method of analysis. This is an 
extension of the Howarth (1 948) transformation to unsteady boundary 
layers. First, the y-coordinate is replaced by Y,  where 

in which the suffix co refers to some standard state of the fluid. Later we 
shall identify this state with the mean state of the free stream. Next, Moore 
introduces a function $ satisfying 

which closely corresponds to the stream function in steady plane flow. 
(For example, mass flux is measured by pa+.) Then, the equation of 
continuity (1) is satisfied if 

and, with t, x, Y as the independent variables, (2) and (3) are immediately 
transformed into 
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These equations may be simplified further by making the special 
assumption that the viscosity varies as the temperature T across each station 
in the boundary layer. According to this, 

where the viscosity at the wall pw may be related to the wall temperature T ,  
by Sutherland's law 

P = P w  TIT,, (14) 

where T, is a characteristic temperature of the fluid, 114" K for air. The 
formula (14) which was discussed by Chapman & Rubesin (1949), is a 
good approximation to the true viscosity-temperature relation (Sutherland's 
law) near the wall, all along the boundary layer. Of course it is less accurate 
in the outer part of the boundary layer, where it would be better to use 
p = p1 TIT,, but errors in the viscosity and conductivity there are mitigated 
by the smallness of the velocity and temperature derivatives. Equations (14) 
and (15) together imply that 

P = CPmI1.L  
where 

in which x = TJT,. It now follows, with the help of (7) and (8), that 

PP = P."P,> (18) 
where 

P m .  
c' P 
Pa 

When pp is replaced by p*pm, according to (18), the boundary layer equations 
take the simplified form 

v, *l - - (20) 
1 ap I - = - - 1 -  +c + -- - -  - (i aYax a* a a* a x a y  a > a +  ay P1 ax I1 p, a ~ 3 9  

These are simultaneous differential equations for the mass-flux function y5 
and the enthalpy I, which are the two quantities we have to determine. 

3. FLAT PLATE FIXED IN A LOW SPEED FLUCTUATING STREAM 

In order to 
gain some information about the behaviour of the boundary layer on the 
obstacle in this kind of flow, we shall examine the boundary layer on a hot 

We have already mentioned the flow in the Rijke tube. 
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fiat plate which is fixed at zero incidence in a low speed stream containing 
a progressive sound wave. We choose a flat plate as the obstacle rather 
than a circular cylinder, which would be more representative of the wires 
in the gauze, because the external flow past it is simpler. A flat plate at 
zero incidence does not, in a first approximation to the boundary-layer 
problem, affect the incident stream. With a circular cylinder, unless we 
restricted attention to wavelengths of sound much greater than the radius 
of the cylinder, we should have to include the effects of the scattering of 
the sound wave in the velocity external to the boundary layer. (Of course, 
in the Rijke tube, the sound waves are in fact much longer than the 
dimensions of the obstacle.) With a flat plate there is no scattering 
whatever the frequency of the sound waves. 

If the stream past the plate has a mean velocity U,, and if there is a 
sound wave of frequency w moving downstream in it, the resultant velocity 
may be written, in complex form, as 

ul(t, x) = U,  1 + E  exp iwt - - [ ( LliS)], 

in which E < I. Here, M is the Mach number of the mean flow and s is 
the frequency parameter ox/ U,. The corresponding pressure and 
temperature are given by 

1 + ( y -  1)MEexp 

These expressions are valid for all values of M and w ; the only approximation 
that they involve is that and higher powers of E should be negligible. 

We shall confine attention to the case when M is small, partly because 
this is appropriate to  the low speed stream in the Rijke tube and partly 
because the solution of the boundary layer equations, especially for the 
temperature, is thereby shortened. In  the extreme case M = 0, which 
applies to an incompressible external stream, the speed of sound then being 
infinite, (22) becomes 

ul(t, x) = Urn( 1 + Eeiot), (25) 
and the corresponding pressure, density, and temperature, are constants 
with the values p, ,  p, and T,  respectively. Thus, by setting M = 0, the 
progressive nature of the sound wave is obliterated, and the problem is 
reduced to that of the compressible boundary layer on a flat plate in an 
incompressible stream whose velocity is fluctuating in magnitude. This 
problem for a fluid that is incompressible in the boundary layer as well as 
in the external stream has been discussed by Lighthill (1954) for a cylindrical 
obstacle of arbitrary cross-section, and by Gibellato (1955) for a flat plate. 
By taking M = 0 in the following theory we shall be able to show how large 
temperature differences modify their results. 

2n2 
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The simplification to the boundary-layer solution that is possible 
when M is small is brought about by neglecting the dissipation in the 
energy equation (2 1). This is a crucial step that sets a limit to the magnitude 
of M. For the discarded dissipation is O(Ma), while the terms retained 
are O(x-  l), where x = Tw/T,, and we shall assume that x is O(1). For 
a red-hot wire, x would be in the region of 2. We are therefore committed 
to neglecting any term whose weight is O(M2) compared with those 
retained, 

It follows that the external stream may be expressed as 

u,(4 x) = Um(l+ E),  (26) 

where E = ~exp(iwt-Mis). 
been derived, is homentropic, and so pldl l  = dp,. 
dissipation neglected, the energy equation (21) takes the simpler form 

This stream, like the one from which it has 
Consequently, with 

(29) 

In solving equations (20) and (29) it will be convenient to separate the 
cases of low and high frequency. The frequency parameter s is equal 
to Kx/M, where k is the wave number. In  the Rijke tube the quantity Kx, 
being of the order of the ratio of the diameter of the wire to the length 
of the tube, is small, but since we are considering M to be also small it 
is quite possible for s to be large. More precisely, we shall examine the 
cases of small and large values of s in turn. 

Case of low frequency 
When s is small, the external stream is given by 

u,(t, x) = Urn[ 1 + (1 - Mis)Eei”t], 

Pl(t, 2) = p a  +YMEf+”l, 

T,(t, x) = Tm[l + ( y  - 1)MeeiWt], 

(30) 

(31) 

(32) 
when terms involving M 2  are neglected. 
terms like ( -  l/pl)ap,/ax in equation (20). This is equal to 

Care is required in evaluating 

au, au, u: - + u - = - [( 1 - M)is - M(is)2]~e~”~ 
at ax x 

according to (26), and does not vanish as (31) would suggest. 
appropriate form of the function # in the solution for small s is 

The 

W + = (cum v, x)112 [ ~ ( q )  + Eeimt  n=o 2 (ispjn(q)], (33) 

where 7 = [ U,/(Cv, x ) ] ~ / ~ Y .  It follows that 
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and 
_ - -  a+ - *(cum V,/X)l/Z x 

i?X 

where the dashes denote differentiation with respect to 7. The temperature 
may be written in the form 

m 

T / T ,  = x - (x - 1)G(q) + Eeiwt 2 (is)rLga(q). (36) 
n=O 

The boundary conditions require that 

(37) 

I F(0) = F(0) = 0, 

fO(0) =fm = 0, 

fn(0) = f5m = 0, 
go(0) = - ( Y -  1)Mx, 
gJ0) = 0, g,Lm) = 0 (a 3 1) .  J 

F'(co) = 1 ;  

fd(..) = 1; 

f;( W) = 0 (. 3 2); 
go(co) = 0 ;  

G(0) = 0, G(w) = 1; 

I fd0) =fl(O) = 0, f ; ( a ) =  - M ;  

When the expressions (34), (35) and (36) are substituted into (20) we 
obtain, from the term independent of E, Blasius's equation 

The Blasius function F is tabulated for instance by Schlichting (1955), 
and the numerical values required in the present problem were taken 
from that source. Considering next the terms involving E (c2 is of course 
neglected), we obtain from the terms independent of s 

and, from the terms with the factor s, 

F " + i F F  = 0. (38) 

f:; + 4 Ff;' + &pfo = -yMF"' = &yMFF", 

Dl f l  = f; - (1 - M)[Y - (x - 1)GI, 

(39) 

(40) 
where D, denotes the oDerator 

d3 d2 d 
- + i F -  - F -  + # F .  
dT3 d.r2 4 

Similarly, equation (29) yields the equations 

(41) 
1 - G + & F G '  = 0, P 

y M  1 1 
pg6 + +Fgb = ( x -  1) [ &G'fo + G = &(x- 1)G'( fo - yMF),  (42) 

where D, denotes the operator 
d 

+ * F -  -F. 1 d2 -- 
P dT2 d.1 

The required solution of (41) is 

G = 1'' [F"(s)IP ds/lom [F"(s)lP ds, 
0 

(44) 
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and tlus function is tabulated in table 1 for P = 0.72, which has been taken 
as a representative value of the Prandtl number for air. Now, equations (39) 
and (42) would still survive if w were zero, when the external velocity 
would be U,( 1 + e). In  fact, f, and go represent the perturbations in the 
steady flow solution when the parameters U ,  and v, that occur in the 
steady solution are changed to Urn( 1 + e) and v,( 1 + yMc)  respectjvely. 
This last expression arises from the fact that the factor Cv,pl/po, in (20) 
and (29), which is Cv, when the flow is steady, takes the value Cvw( 1  ME) 
in the quasi-steady case (w = 0). Thus 

(CU, v, x ) y o  = u, - + yMv, - [( cu, l', x)1'2F(7)], 

fo = $(F+qF)+ ;yM(F-TF') .  

a 

av, "1 a 
[ au, 

whence 

Similarly, 
(45 1 

av, 

(46) 

"I gn = - ( ~ - l ) M x ( l - G ) +  - +yMv,  - [x-(x-l)G(q)] c au, 
= - ( ~ - ~ ) M x ( ~ - G ) - ~ ( x - ~ ) ( ~ - ~ M ) ~ G ' ,  

in which the first term arises because go and x- (x- l)G have to satisfy 
different boundary conditions. 

The solution of (40) may be written as 

f l  = - f l l + X f l z - ~  [ ZY 1 ( 17- F" qb)) + g( 1 - :y)F + i( 1 - f y ) q F  - 

- Mil+ (x - 1 + trlf12 + (1 - :vlfi3]> (47) 

where fll, f l p  and f13 are the solutions of 

D1 f 1 1  = G - ( 4 ~ F n  + F), 
Di fiz = G- 1, (49) 

Dl fi3 = F 2 - l ,  (50) 
subject to the boundary conditions fln(0) =fin(0) =f in (  co) = 0 for 
n = 1,2,  3.  These three differential equations are solved by first finding the 
solution of the homogeneous differential equation 

Dl fi0 = 0, 

subject to flo(0) =fi(,(O) = 0, f;o(0) = 1. Then, to find fll for example, 
the particuIar integral fil, of (48) that satisfies fil(0) = zl(0) =El(O) = 0 
is next determined, and the required function is given by 

The functions fl, (n = 0, 1, 2, 3)  are tabulated in table 1.  
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Finally, the solution of (43) may be written as 

gl = (X-1)(gll-Xg12)+M[X(Y- l)g13+(X- ‘)(%l - b ) ~ G - b g l l +  
+ (x - 1 f blg12 + #(I - blg14 - HY/wO))gl5119 (52) 

where gll, gI2, g13, g,, and g,, are the solutions of 

subject to the boundary conditions g,,(O) = gl,( a) = 0 for n = 1, 2, 3, 4, 5. 
The solutions of these are found, as for the corresponding f equations, by 
first determining the solution of 

D2 g,, = 0 (58) 
subject to  g,,(O) = 0, gi,(O) = 1, and then combining it in turn with the 
particular integralsof (53)-(57) for which gl,(0) = g;,(O) = 0. The functions 
g,, (a = 0, 1, ..., 5) so determined are tabulated in table 2. 

The skin friction is 

and if ( T ~ ) ~  denotes the skin friction for steady flow, viz. 

- -  7w - l+~e~”~[ l -5+(3 .661~- -  1*105)is+ 
(7W)S 

+ M(0.7 - (3 .661~ + 1*228)i~}], (60) 
for y = 1.4, provided that s is small enough for s2 and higher powers to be 
negligible. 

Similarly, the heat transfer from the plate to the air is 

W 1 cum v, 112 p, 
= ~ P w (  7) I,[ (x- 1)G’(O) - eeiWt n=n 2 (i~)~g:~(O)], (61) 

and if (qw), is the heat transfer in steady flow, viz. 
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0.028 
0.019 
0.013 

0.008 
0.006 
0.003 
0.002 
0.001 

0.001 
0.000 
0.000 
0.000 
0.000 

0.000 

f';, 
1 -21 59 
1.022 
0.840 
0.669 
0.510 

0.364 
0.229 
0.107 

-- 0.002 
-0,097 

-0.179 
- 0.245 
- 0.296 
-0.331 
-0.352 

-0.358 
-0.352 
-0.335 
- 0.309 
-0.278 

- 0.244 
-0.208 
-0.174 
-0.141 
-0.112 

-0.087 
-- 0.066 
-0.050 
- 0.036 
- 0.026 

-0.018 
-0.012 
- 0'008 
- 0.006 
- 0.004 

- 0.002 
- 0.002 
- 0.001 
- 0.000 
- 0.000 

- o*ooo 

f l s  

0 
0.028 
0.106 
0.227 
0.382 

0.565 
0.768 
0.984 
1 -206 
1,429 

1.647 
1.857 
2.054 
2.235 
2.399 

2.545 
2.671 
2.779 
2.870 
2-944 

3.004 
3.052 
3.088 
3.116 
3.137 

3.152 
3.163 
3.170 
3.176 
3.179 

3.182 
3.183 
3.184 
3.185 
3.185 

3.186 
3.186 
3.186 
3.186 
3.186 

3.186 

f: 8 fL 
0 1 -4599 
0.272 1.260 
0.504 1.062 
0.697 0.868 
0.852 0.679 

0.969 0.497 
1.051 0.325 
1.100 0.164 
1.118 0-018 
1.108 -0.113 

1.074 -0.225 
1.019 -0.318 
0.948 -0.389 
0.865 -0.438 
0.774 -0.466 

0.680 -0.474 

0.495 -0.440 
0.586 -0.464 

0.411 -0.404 
0.334 -0.361 

0.267 -0.314 
0.208 -0.266 
0.160 -0.220 

0.089 -0.139 
0.120 -0.177 

0.064 -0.107 
0.046 -0.080 
0'032 -0.059 
0.022 -0.042 
0.014 -0.030 

0.010 -0.020 
0.006 -0.014 
0.004 -0.009 
0.002 -0.006 
0.001 -0.004 

0.001 -0.002 
0.000 -0.001 
0.000 -0.001 
0.000 -0~000 
0.000 -0~000 

0.000 -o*ooo 

Table 1 (cont.). 
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17 
0 
0.2 
0.4 
0.6 
0.8 

1 *o 
1 a2 
1 -4 
1-6 
1.8 

2 .o 
2.2 
2.4 
2.6 
2.8 

3 .O 
3.2 
3.4 
3.6 
3.8 

4.0 
4.2 
4.4 
4.6 
4.8 

5 .O 
5.2 
5 -4 
5 *6 
5.8 

6.0 
6.2 
6.4 
6.6 
6.8 

7 .O 
7.2 
7.4 
7.6 
7 *8 

8 -0 

g10 

0 
0.200 
0.400 
0-602 
0.806 

1.015 
1-231 
1.457 
1 -697 
1.955 

2.234 
2,541 
2.880 
3.255 
3.672 

4.136 
4.652 
5.223 
5.855 
6.550 

7-312 
8.143 
9.045 

10.019 
11 *066 

12.187 
13.383 
14.653 
15.996 
17.414 

18.905 
20.469 
22-106 
23.816 
25-598 

27.452 
29.378 
31.377 
33.447 
35.589 

37.802 
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d o  
1 
1 .ooo 
1 ~004  
1-013 
1 *031 

1.060 
1.103 
1.162 
1.241 
1.340 

1 -462 
1.609 
1,780 
1.977 
2.199 

2.445 
2.714 
3-005 
3.314 
3 ~640  

3.980 
4.330 
4.689 
5.053 
5.422 

5.792 
6-1 63 
6.534 
6.903 
7.272 

7.638 
8.003 
8-367 
8.730 
9-091 

9.452 
9.812 

10.171 
10.530 
10.889 

11.247 

g11 

0 
0.054 
0.106 
0.157 
0.206 

0.250 
0.290 
0.326 
0.354 
0.376 

0.391 
0.399 
0.400 
0.393 
0.380 

0.362 
0.339 
0.312 
0.283 
0.252 

0.222 
0.192 
0.163 
0.137 
0.113 

0.092 
0.073 
0.058 
0.045 
0.034 

0.026 
0.019 
0-014 
0.010 
0.007 

0.005 
0.003 
0.002 
0.001 
0.900 

0.000 

R: 1 
0.2689 
0.267 
0.260 
0.249 
0-233 

0.213 
0.188 
0.160 
0.128 
0.093 

0.057 
0.021 

-0.015 
--0*049 
-0.079 

-0.105 
-0.126 
-0.141 
-0450 
-0.154 

-0.152 
-0.147 
-0.138 
-0.126 
-0413 

-0.099 
-0.085 
-0.071 
-0.059 
-0.048 

-0.038 
- 0.030 
-0.023 
-0.017 
- 0.01 3 

- 0.009 
-0.007 
- 0.005 
- 0'003 
-0.002 

- 0.002 

gia g;z 
0 0.2484 
0.050 0.248 
0.099 0.246 
0.148 0.239 
0.194 0-228 

0.238 0.212 
0.279 0.189 
0.314 0.161 
0.343 0.129 
0.365 0.092 

0.380 0.054 
0.386 0.01 5 
0.386 -0'022 
0.378 --0.057 
0.363 -0.088 

0.343 -0.113 
0.318 -0.133 
0.290 -0.146 
0.261 -0.152 
0.230 -0.154 

0.200 -0.149 
0.170 -0441 
0.143 -0.130 
0.118 -0.117 
0.096 -0403 

0.077 -0.088 
0.061 -0,075 
0.047 -0.062 
0.036 -0.050 
0'027 -0.040 

0.020 -0.031 
0.015 -0.024 
0-010 -0.018 
0.007 -0.014 
0.005 -0.010 

0.003 -0.007 
0.002 -0.005 
0.001 -0.004 
0.001 -0.002 
0.000 -0.002 

0.000 -0*001 

Table 2. 
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rl 
0 
0.2 
0.4 
0.6 
0.8 

1 .o 
1.2 
1.4 
1 -6 
1 43 

2.0 
2.2 
2.4 
2.6 
2.8 

3 4 
3.2 
3.4 
3.6 
3.8 

4.0 
4.2 
4.4 
4.6 
4.8 

5 4 
5.2 
5 -4 
5 -6 
5 *8 

6 *O 
6.2 
6.4 
6.6 
6.8 

7 *O 
7.2 
7 -4 
7.6 
7.8 

8.0 

gia 
0 
0.128 
0.228 
0.304 
0.358 

0.392 
0.409 
0.412 
0.404 
0.386 

0.362 
0.333 
0.301 
0.268 
0.23 5 

0.204 
0.174 
0.147 
0.122 
0.100 

0.081 
0.065 
0.051 
0.040 
0.031 

0-024 
0.018 
0-01 3 
0.010 
0.007 

0-005 
0.003 
0.002 
0.002 
0.001 

0.001 
0.001 
o*ooo 
o*ooo 
0.000 

o*ooo 

g;s 

0-7079 
0.568 
0.439 
0-322 
0.217 

0.126 
0-048 

-0.016 
-0.067 
-0.107 

-0.135 
-0453 
-0463 
-0.165 
-0462 

-0.154 
-0.143 
-0.130 
-0416 
-0.102 

-0.088 
- 0.074 
-0.062 
-0.051 
- 0.041 

-0.033 
- 0.026 
-0.020 
-0.015 
-0*011 

-0.008 
-0.006 
- 0.004 
- 0.003 
-0.002 

-0.002 
-0.001 
-0.001 
- 0 .ooo 
- 0 so00 

- o*ooo 

K l 4  

0 
0.042 
0-084 
0-124 
0.164 

0.201 
0.235 
0.265 
0.290 
0.309 

0.322 
0.328 
0.327 
0.321 
0.309 

0.292 
0.271 
0-247 
0.222 
0.196 

0.170 
0.145 
0.122 
0.101 
0.082 

0.066 
0-052 
0-040 
0.03 1 
0.023 

0.017 
0.012 
0.009 
0-006 
0.004 

0.003 
0.002 
0.001 
0.001 
O.Oo0 

0.000 

0.2093 
0-209 
0.207 
0.202 
0.193 

0.179 
0.161 
0.137 
0.110 
0.080 

0.047 
0.014 

-0.018 
- 0 *048 
- 0,074 

-0.096 
-0.112 
--0*124 
-0.130 
- 0.1 30 

-0.127 
-- 0.1 20 
-- 0.1 11 
--0.100 
-0.088 

-0.075 
-0.063 
-0.052 
-0.042 
-0.034 

-0.026 
-0.020 
-0.015 
- 0.01 1 
- 0.008 

- O.OQ6 
-0.004 
- 0.003 
- 0.002 
- 0.002 

-0.001 

i?lS 

0 
0.019 
0.038 
0.055 
0.071 

0.085 
0.097 
0-107 
0.114 
0.119 

0.122 
0.122 
0.119 
0.115 
0.109 

0.102 
0.093 
0.084 
0-075 
0.065 

0.056 
0.048 
0.040 
0.033 
0.027 

0.021 
0-017 
0.013 
0.010 
0.008 

0.006 
0-004 
0.003 
0.002 
0.002 

0*001 
0.001 
o*ooo 
0.000 
0.000 

0.000 

g;6 

0.0956 
0.094 
0.090 
0.084 
0.076 

0.066 
0.055 
0-043 
0.030 
0.018 

0.005 

-0.017 
- 0.026 
-0.034 

- 0.006 

- 0.040 
-0.044 
- 0.046 
- 0.047 
- 0.046 

--0.044 
- 0.041 
-0.037 
-0.033 
-0.029 

-0.025 
-0.021 
-0'017 
-0.014 
-0.011 

-0.008 
- 0.006 
-0.005 
-0.004 
-0.003 

- 0.002 
-0~001 
- 0.001 
- 0.001 
- o*ooo 

- 0~000 

Table 2 (comt.) 
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it follows that 

0.5 + (0.840~ - 0.910)is + 

(0.7~-  1.1 - (0.840~’- 0 .080~ + 0.198)i~) , + -  (62) 1 M 
X - 1  

for y = 1.4, again provided that s2 and higher powers are negligible. 

Case of high frequency 
When the frequency parameter s is large, it is appropriate to expand 

in inverse powers of s. If u = (is)-lIz and /3 = (~w/CV,)~”Y, it follows that 
17 = up, and we may write, instead of (33), 

c 1 
# = u, (2) 2W [ U - F(@) + E  71 5 = 0 afih,,(p)]. 

Then. 

and 
a 

- = $(iwC~,)~:~[ u ~ ~ B F ’ ( u ~ ) -  u F ( u ~ )  + E L\ (nuz + 2 M ) ~ ~ h ~ ( p ) ] .  (65) 
ax - n=o 

Corresponding to (36) we write 

n = o  

For small a, 
q U p )  = 4 ~ ” ( 0 ) ~ 2 p 2  + 0 ( ~ 5 ) ,  

~ ( ~ p )  = G ’ ( o ) ~ ~  + 0 ( ~ 4 ) ,  and 
provided /3 is not too large. With the help of these approximations, we 
obtain, by substituting in (20) and considering successive powers of a, the 
following differential equations 

h”’-h’ - - 
hr-h’,  = (x- 1)(1 -M)G‘(0)P+MF”(O)(ho-/3h~), 
hi  - h; = MF”(0)(hl - @l), 

0 0 - x(l-M), 

h! - h$ = $F”(O)(+P’h;[ - BIZ;,) + MF”(O)(h, - ph;). 

In  the complementary function of each differential equation, the term 
involving eb must be suppressed because it has the wrong behaviour for 
large ,B, and therefore there are only two constants of integration. These 
are determined by the boundary conditions h,(O) = hi(0) = 0. The 
appropriate solutions are 

h, = (I-~)x(p+e-fl--I) ,  
h 1 - - - --( x - l)G’(0)p2 + M[+(x - 1)G’(0)p2 + 

+ x ~ ( o ) { P + ~ e - ~ ( 9 + 5 r s + p 2 ) - ~ } ] ,  
h, = - M ( x  - l)F”(O)G’(O)(p + Q p3 + e-8 - l), 
h, = & ( l - M ) ~ F ” ( O ) [ 4 / 3 ~ + e - ~ ( 1 3 + 1 3 / 3 + 5 / 3 ~ + $ ~ ~ ) - 1 3 ] ,  
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Sirnilarly by substituting in (29) we obtain the differential equations 

P-lk; - ko = 0, 

F l k Y - k ,  = -M[F(O)/3k0+(x- l)G’(0)ho], 

P-lk; - k2 = - M[F”(O)/3kl+ ( X  - l)G’(0)hl], 

P 1 k , ”  - k, = &F”(0)p2kI, + $ ( x  - l)G’(O)@hI, - M[F”(O)& + ( x  - 1)G’(O)h2]. 

The appropriate solutions, for moderate /3, are 

1 1 
k2 = M(x - l)2[G’(0)J2[[-, (e-Bdp - 1) - 4/32 , 

2P P 2P 
k, = frx(x-l)G’(O) [ - p +  e-Bdp- { l-p /3 + m } e - p ]  - 

the term ebJP in the complementary functions having been discarded in 
each case, and the solutions having been made to satisfy the boundary 
conditions 

ko(0) = - M ( y  - 1)x ,  k,(O) = 0 ( n  2 1). 

It now follows that for large frequencies (a small) 

7Jt)X) = - 

= pm uz, (-) c v m  1’2 fi [ F”(O)+E 5 u-1 hi(O)], 
u m x  P m  n=o 

and so 

- -  T20 - 1 +E[3*011~( i~)~/~-0*8903(~-  I) +0*3125x(is)-l+ 
(TW>S 

+ M( - 3 * 0 1 1 x ( i ~ ) ~ / ~  + 1 .140~  + 0.5097 - 0*2956(x - l ) ( i ~ ) - l / ~  - 

- 0.3125x(is)-l}], (67) 

provided the cube and higher powers of s-lj2 are neglected. 
Similarly the heat transfer from the plate is 
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and so 
M 

+ 2.3410% - 1.8 + 0*3484(x - l)'(i~)-~/' - (0.3945~'- 

qw - 1 + E 0*3945~(is)-~ + - { - 1.148~(is)~/~ - 0.5410x? + (a - [ X - 1  

- 0.4226x)(is)-')] (68) 

If, in order to  compare the formulae for small and large frequency, we 
for P = 0.72, with the cube and higher powers of s-l-11' neglected. 

write 

and 
Qw 1 + Eei(wt-.irs) (C + iD), 

= 

where A, B, C and D are real, then 

A = 1.5 +0*7M (small s) 

(large s), J 
= 2.129~~1~ - 0*8903(~ - 1) + M [  - 2*129s1I2+ 1.1403~ + 

+ 0.5097 - 0.2090(~ - l ) ~ " ~ ]  

B = (3.661% - 1.105)s- M(3.661~ - 0.272)s 
= 2 * 1 2 9 ~ ~ / ~  - 0.3125.~~ + M [  - 2.129~"~ + 

-t 0-2090(~ - l ) ~ - ~ ' ~  + 0-3 125s1] (large s), 

0 . 7 ~ -  1.1 
C = 0*5+M (small s) 

= M [ - 0'8117x s1j2 + 1-8 - 0.S410x + 0.2464(~ - l ) ~ r l / ~ ]  (large s), 

X - 1  

X-1 
1 

(small s) I (0 .840~~  - 0.080~ + 0.198)s 
M 

D = (0.840~ - 0.910)s- - 
X - 1  I 
- 0.81 1 7 ~  

= - 0.3945xs-lf M [ .W - 0.2464( x - l)s-l/' + 
X-1 

(large s). 
0.3945~' - 0.4225~ + 

X - 1  
The angles tan-l(B/A) and tan-l(D/C) are the amounts by which the phases 
of the skin friction and the heat transfer respectively are in advance of the 
mainstream fluctuation. 

In the important special case M = 0, 

- -  7w' - 1 +~e'"''[l-5 +i(3-661~- 1-105)s] (small s) 1 , 

+ i ( 2 m ~ -  0.3125s-1)l (large s). 1 
1 (73) 

( 7 W ) S  

= 1 + ~e~"~[2*129s~/~  - 0-8903(x - 1) + 

When fqrther the flow is completely incompressible, y = 1, as we have 
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already mentioned, and we then obtain 

- -  Tw - 1 + eeiwt( 1.5 + 2.5564 
(720)s 

(small s) 1 
1 (74) 

= 1 + eeifut[2- 129s1i2 + i ( 2 . 1 2 9 ~ ~ / ~  - 0.3 125s-l)l (large s). , I 
(We may notice here that Moore (1951) gives 2.555 as the coefficient of is 
in the formula for small s.) The formulae given by Lighthill for the skin 
friction in this case are 

= 1 + ~ e ~ " ~ [ 2 . 0 6 2 s ~ / ~  + i(2.062s19] (large s). J 
The good agreement between (74) and ( 7 9  and particularly the fact that 
the coefficients of is for low frequencies are practically equal, strongly 
supports the use of the Pohlhausen approximate method by Lighthill in 
this problem. Lighthill also showed that the whole range of values of the 
frequency might reasonably well be covered by using (75) only. For at 

4'0i 

0"- 0.5 1.0 1.5 2.0 2.5 3 
s 

30° 

40" 

3oo 

tan-'BJA 

20" 

1 0" 

1" 
1 

Figure 1. Variation of A, B, and tan-I(B/A) with frequency parameter s when 
M = 0 and x = 1. 

the place s = so where the values of tan-I(B/A) are equal in the two parts 
of (75), the values of (A2+B2)1/2 agree, and so it is reasonable to assume 
that the two parts of (75) apply to the respective ranges s < so and 
s > so. This point is illustrated in figure 1, where the quantities A, B and 
tan-I(B/A) as given by (74), rather than (75), are plotted for various values 
of s. For if the term involving s-l in (74) is discarded, so as to bring the 
formula into line with (75), the B-curve for large s will coincide with the 
given A-curve for large s. Then, A = B for both large and small s 81 
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s = so = 0.59 and here the two A-curves are close together. Figure 2, 
based on (73), shows the same information for x = 2 as figure 1 does for 
x = 1. However, for x = 2, the whole range of values of s does not appear 
to be as well represented as it was for x = 1 simply by the formulae for small 
and.large s. T o  make a strict comparison with the previous discussion, 
we should retain only the terms involving s1i2 in the part of (73) referring 
to large s. Then, the A- and B-curves for large s would coincide with the 
A-curve for large s in figure 1, and we should have A = B for both small 
and large s at s = so = 0.24. Here the values of A would be 1.5 for small s 
and 1.043 for large s (from the A-curve on figure 1). This involves a much 
larger discrepancy than the case x = 1, where the corresponding numbers 
are 1.5 and 1-64 respectively. In  fact, figure 2 suggests that the formulae (73) 
will not be adequate to cover all values of the frequency for an arbitrary 
value of x. 

Joo 
0.5 1.0 1.5 2.0 2.5 3.G 

S 

Figure 2. Variation of A, B, and tan-l(B/A) with frequency parameter s when 
M = 0 and x = 2. 

The quantity tan-l(B/A) is of course the phase advance of the skin 
friction relative to the main stream. As (69) and (70) show, this has the 
asymptotic value for large frequencies whatever the values of x and M 
(small). For any specified small value of s, on the other hand, the phase 
advance is increased by increasing the value of x, that is, by increasing the 
temperature of the plate and therefore reducing the inertia of the gas near 
the surface. 

As regards the heat transfer from the wall, it can be seen from (71) and (72) 
that the phase advance for small frequency is small and negative in the 
incompressible case (x = 1) as Lighthill found. In fact, for the case M = 0, 
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x = 1, Lighthill's work gives 

= 1 + ~ e ~ " ~ ( O . 5  - 0.03is) for small s, 
( Q W h  

whereas the present calculations give the same formula with the coefficient 
0.03 replaced by 0.070. (Ostrach's (1955) value is 0.069 to the present order 
of accuracy.) The Pohlhausen method has in fact predicted this coefficient 
reasonably well, giving the correct sign and a small quantity of the correct 
order of magnitude. As x is increased, the phase advance increases (becoming 
positive at x = 1.08), as it does for the skin friction. Since, for large values 
of s, C and D are 0 in the case M = 0 provided that terms smaller than slla 
are neglected, the heat transfer does not lend itself to a graphical 
representation corresponding to figures 1 and 2. 

APPENDIX 
A note on transformations of the compressible boundavy-layer equations for 

The analysis of Q 2 shows that the Howarth transformation as extended 
by Moore provides a very useful method of treating the boundary-layer 
equations for unsteady compressible flow. Now, in the theory of steady 
boundary layers, besides the Howarth transformation there are the von Mises 
and the Crocco transformations. All these transformations hinge upon the 
replacement of the coordinate y perpendicular to the wall by a convenient 

unsteady Jrow 

alternative variable. The Howarth transformation uses 

of y ,  as we have already seen; the von Mises transformation uses the 
stream function, which exists in steady plane flow, and the Crocco transforma- 
tion uses the velocity component u. These have all been described by 
Howarth (1953). The Crocco transformation has been mainly employed 
in studying the steady boundary layer on a flat plate, whilst the other two 
transformations, besides their application to the flat plate, have borh been 
used to show that a compressible boundary layer with a non-zero pressure 
gradient in certain circumstances may be given in terms of the solution of 
an associated incompressible boundary-layer flow. I t  is therefore of some 
interest to examine whether the von Mises and the Crocco transformations 
can also be conveniently extended to the case of unsteady boundary-layer 
flow. 

The von Mises equations 
In  the von Mises transformation for unsteady flow, the new variables 

are t ,  x and +, where + is the mass Aux function defined by the equation 

P _ u = $ f  
P m  aY * 

I n  terms of the new variables 

P.M. 2 1  
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It is easy to show that the momentum equation (2) becomes 

in which the first two terms on the left-hand side may be replaced by 

and that the energy equation (3) becomes 

Of course these von Mises equations have little practical value if they are 
in all circumstances more difficult to solve than the corresponding 
equations (12) and (13) that result from the Howarth transformation. It 
is scarcely possible to assert that they will be more difficult without a detailed 
study of some special cases, but it will perhaps be worth while to notice 
how unsteadiness of the flow increases the difficulties of solution in one 
or two simple cases of steady flow that have been investigated by means 
of the von Mises transformation. To take an easy example, consider steady 
flow past a flat plate for which the momentum equation in the von Mises 
form is 

This equation mas solved by von KBrmh & Tsien (1938) under the 
assumptions that p = pLo3(T/Tm)"! with n = 0.76, P = 1, and that there is 
no heat transfer at the plate. The last two conditions ensure that 
I+ $2 = I, + 4 U:, where the suffix co refers to the uniform main stream, 
and the first condition shows that pp = p,,pm(I/lm)ll-l, so that pp is a 
function of u only, given by 

pp = PmPm[ 1 + 2 (1 - ">I? u: 
Thus, (79) reduces to a second order differential equation for the single 
dependent variable u. If the expression (80) is substituted in equation (12), 
a third order equation for $ results, and so there is something to be said 
for preferring the von Mises momentum equation in this problem. 

In the field of unsteady flow a relatively simple problem of the same type 
concerns a flat plate in a constant stream when the temperature of the plate 
is a function of time. Then there are no pressure gradients and the 
von Mises momentum equation reduces to 

Even if we assume that P = 1, it is no longer possible to write 
I +  +u2 = I ,  + ;-ua 
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now that there is heat transfer at the plate, and so pp cannot be expressed 
in terms of u only, as in equation (80). 

However, if, instead of assuming that p K T", we adopt the approxi- 
mation referred to in § 2 and write 

PP = CP- P a  

where C, given by (17), is a known function of t only, equation (81 )  is a 
differential equation involving only the one dependent variable u. Thus, 
by altering the assumed viscosity temperature law, we have kept to a problem 
of the Khrman-Tsien type, namely, the solution of a second-order partial 
differential equation for u, as far as the momentum equation is concerned. 
Of course it still remains to solve the energy equation (78), for information 
about the temperature (and density) in the boundary layer. 

Actually, if we use the rather formal viscosity-temperature law p cc T,  
so that pp = pmpm.  this problem can be simplified still further. For the 
velocity u then loses its explicit dependence on t ,  and the momentum 
equation is 

Thus u(x, 9) is simply the velocity (expressed in von Mises coordinates) 
for steady incompressible flow past a flat plate. The temperature would 
then be given by solving the energy equation 

The Crocco equations 

is the non-dimensional velocity distribution function given by 
In the Crocco transformation the new variables are t ,  x and z ,  where u" 

When uI is a constant this is precisely the transformation that Crocco used 
to investigate the steady boundary layer on a flat plate. Following Crocco, 
we eliminate pz* between the transformed equations of continuity and 
momentum, and introduce the shearing stress 

as a dependent variable in place of u. 
equation 

In this way, (1) and (2) lead to the 

Similarly, by transforming (2) and (3) and eliminating pv between them 
2 1 2  
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we obtain 

The boundary conditions that go with these equations concern the 
values of T and I at the wall, x = 0, and at the outer edge of the boundary 
layer x = 1. Equation (2) shows that a+y = ap#x at the wall, and so 

aT aP, 
T a~ = pWu1 ax at x = 0. 

Since the shearing stress vanishes at the outer edge of the boundary layer 

We shall suppose that either the wall temperature (enthalpy I,) or the heat 
flux, qw, from the wall is specified. It follows that I must satisfy either 

Finally, the condition 

completes the list of four boundary conditions. 
Equations (83) and (84) are quite complicated, especially because of 

the large number of terms on the left-hand side in each case. In this respect 
they are much worse than either the Howarth-Moore equations (12) and (13) 
or the von Mises equations (77) and (78). However, it would be feasible 
to use them in some circumstances. Some preliminary work showed that 
it would have been practicable to obtain the results of $ 3  by solving these 
equations, but the simpler calculations involved in starting from the 
Howarth-Moore equations turned out to be preferable. One advantage 
of the Crocco equations is that the momentum equation is of the second 
order, but one of the complications encountered in the work just mentioned 
arose from the frequently occurring term pp/7.  It will be recalled that in 
$3 ,  T was expressed as a power series, and the reciprocal of such a series, 
arising in p p / ~ ,  is another series with complicated coefficients. Of course 
these difficulties would also be present if the Crocco equations were applied 
to a steady boundary layer with a non-uniform main stream. So far as the 
author is aware, even this has not been done. 

The Crocco equations are considerably shortened by assuming that the 
external stream is uniform. In fact for the simple problem, mentioned 
above, of a flat plate with a varying temperature and with pp = pL,p,, 
they would reduce to 

- 7 = O  a t z = l .  (86) 

I = I ,  or ( ~ a I / a x >  = - Pu, pw at z = 0. (87) 

I = ] ,  a t x = 1  (88) 
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The solution of (89) for 7 is known from the work of Crocco for the case 
of steady flow, and the problem therefore reduces to solving (90) for I .  

In conclusion, the small amount of evidence from the problem considered 
in this paper suggests that the Howarth-Moore transformation is the simplest 
to apply of the three available transformations in unsteady compressible 
boundary-layer theory. 
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